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President’s Message
Dear AME Members,

This is the second issue of MathsBuzz that | am writing a message as the President of the AME for the period
2010-2012. Thisis an eventful year for the AME, as we have different activities that cater to the professional
needs of different groups of mathematics teachers.

In March 2012, we have organized a problem solving seminar for primary school teachers conducted by Dr
Yeap Ban Har. About 200 teachers attended the event, despite the fact that the seminar fell on an afternoon
of a normal working day.

This is the first time that AME is organizing an event jointly with the Singapore Mathematical Society (SMS)
for the mathematics teachers — the AME-SMS Conference 2012, which is hosted by NUS High School. The theme of the conference
is “Nurturing reflective learners” — one that is broad enough to engage both mathematics educators and mathematicians to come
together and offer valuable knowledge of content and pedagogy to the Singapore teachers. The joint organization of the two
professional bodies AME and SMS also conveys the message that both content and pedagogy are important for one to be a good
mathematics teacher. To date, more than 500 teachers have signed up for the event.

AME also jointly organizes with the Academy of Singapore Teachers (AST) her first AME institute for primary and secondary school
teachers. The AME Institute is a series of focused thematic 10-hour workshops conducted by overseas mathematics education experts.

AME will be organizing a modeling seminar in September 2012 for secondary school teachers. More information will be available
on the AME website http://math.nie.edu.sg/ame once details are finalized.

Before the term of office ending in May 2012, | wish to express my heartiest appreciation to the AME executive committee members
who share the same vision of reaching out to the professional needs of mathematics teachers and who have worked very hard
to make all AME events successful.

Hopefully the year 2012 is one which we acquire rich learning experiences as we continue with our journey to make learning of
mathematics meaningful to all students.

Toh Tin Lam
President,
AME (2010 - 2012)
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Five Alternative Solutions for One Word Problem

Yeo Kai Kow Joseph
National Institute of Education

1. Introduction

In a typical mathematics lesson, most teachers tend to teach the students a particular strategy or rule, show examples of how to solve the problems
using the strategy and then for practice, provide students with many similar problems. However, children and some older students, found it difficult
when confronted with apparently complex mathematical problems such as those involving algebraic manipulations. As the children may still be
operating at the concrete-operational stage (Piaget, 1950); hence, it is necessary to teach the students strategies to assist them to cope with abstract
mathematical concepts and to observe a range of possibilities and alternatives in solving mathematical problems (Fong, 1997).

The integration of problem solving into the mathematics curriculum will require an effective pedagogy for instruction of problem solving. Research
results strongly support the explicit instruction of heuristics and a wide variety of strategies as one aspect of such pedagogy (Anderson & Holton,
1997; Hembree, 1992; Schoenfeld, 1982). If mathematics teachers continue to provide only one or two solutions to a mathematical problem in the
classroom, students may approach a word problem in a mindless, superficial and routine-based way. Thus by showing and analysing alternative
solutions, mathematics teachers can create new learning opportunities for students. Teachers could ask students to present each solution and discuss
it with the whole class. Most importantly, students could be guided to analyse and compare these different solutions. An analysis of these solutions
can quickly reveal the advantages of asking students to explore different ways of solving the same problem. Through comparing and reflecting on
alternative solutions, a many-sided view approach is fostered in the students’ thinking. This helps to establish new mathematical knowledge for the
students. Therefore, it is crucial to expose students to various strategies so as to enable them to deal with abstract mathematical concepts and to
observe a wide range of possibilities and alternatives in solving mathematical problems. In this regard, | have chosen a word problem that is applicable
to primary 5 to secondary 2 students and illustrate the use of various strategies to the problem.

Moreover, abstractions and concepts in this word problem are simplified so that these students can understand the abstractions. Simplification is
effected through the use of familiar and systematic listing as well as simple logical deductions. This is being considered because some primary 5
and 6 students who may still be functioning at the concrete-operational stage may encounter difficulty when confronted with apparently complex
mathematical problems such as those involving algebraic processes. This article discusses how this can be done through the illustrative use of one
word problem and five different strategies, involving algebra as well as familiar strategies used by different secondary 2 students.

2. The Problem
The following is a word problem that primary 5 to secondary 2 students may be tasked to solve:

A Mathematics quiz consists of 20 multiple-choice questions. A correct answer is awarded 5 marks and 2 marks are deducted for a wrong answer
while no marks are awarded or deducted for each question left unanswered. If a boy scores 48 marks in the quiz, what is the greatest possible
number of questions he answered correctly?

This particular problem may be considered as a routine problem for some secondary 2 students as they would have experienced solving such word
problem. However, it may be considered as a non-routine problem for primary 5 and 6 students, if alternative strategies are employed without the
use of algebra. In the following sections, strategy 1 shows a standard strategy of using algebra while strategy 2 to 5 exemplifies the alternative, non-
routine ones.

3. The Five Alternative Solutions

The students’ written solutions were analysed according to the types of strategies used. Five major types of strategies were identified: simultaneous
linear equations, logical reasoning, modeling (systematic counting), make a list as well as guess and check. The coding of the solutions was based
solely on the submitted written work, as none of the students were interviewed.

3.1 Strategy 1 - Algebra (Simultaneous Linear Equation)

Secondary 2 students are familiar with the algebraic strategy of forming
linear equations. In the traditional algebraic approach, two variables are
needed to first represent number of correct and wrong answers. In most
instances, secondary 2 students can apply this standard algebraic strategy
by translating the problem statements into two linear algebraic equations
and solve them simultaneously as shown in Figure 1.

Although secondary 2 students are able to solve the problem by forming
algebraic equations, some may simply applying procedures that they have
been taught without any in-depth understanding of the concepts behind
the procedures. The following are four alternatives strategies that could be
learned by primary 5 to secondary 2 students. These strategies will assist
them acquire the skill of examining a problem from various perspectives
and identifying or selecting the most effective strategies.

Figure 1: A student’s solution using simultaneous linear equations
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3.2 Strategy 2 - Logical Reasoning

A logical solution is to note that the number of questions answered
correctly would be an even numbers as overall score in the quiz is 48 marks.
The single step, (12 x 5— 6 x 2) = 48, and the logical argument indicated
that the student had a deep understanding of the problem scenarios and
structure. This is shown in Figure 2.

3.3 Strategy 3 — Modelling (Systematic Counting)

The modelling aspect of the word problem involving systematic counting
is shown in Figure 3. This was illustrative in the sense that they were used
together with number manipulation as an initial step to understand the
problem. To assist students understand the concepts behind the problem,
systematic counting will help them to visualise the abstractions inherent in
the problem. Students somehow view the problem as being more concrete
and explicit and hence, less abstract.

Figure 3: A student’s solution using modelling (systematic counting)
3.4 Strategy 4 —Make a List

A systematic listing was indicated by the use of at least three consecutive
items, with a difference of 1 or a constant value. Making a list would be
clearer if the student organizes data into a table and then uses it to solve
the problem. The example of making a list is shown above in Figure 4. This
strategy could be shown to primary 5 to secondary 2 students. The student
was able to construct an organized list containing all the possibilities for
conditions stated in the problem. However, in this instance, the equality
sign in the given solution is not used correctly.

3.5 Strategy 5 - Guess and Check

The given problem can also be solved using the guess and check strategy.
The term guess and check strategy indicates the requirement to guess a
number and then to check whether the constraint is satisfied. In fact, the
strategy works completely parallel with “generating numbers”, but since no
“starting number” is available, the student has to guess its value, to check
the correctness of the guess, and to repeat this process of guessing and
checking until they finally arrive at the correct value of the unknown. In
this case, the student made a first guess of the number of correct answers
as 15 and number of incorrect answer as 5 and performed the necessary
calculation to check if the total score is 48 marks (see Figure 5). Within
this strategy, one can either make subsequent “random” guesses, or
apply a “try-and-improve” approach wherein the student actively reflects
on the outcome of previous guess and used it to make better guesses in
the next trials.

Figure 2: A student’s solution using logical reasoning

Figure 4: A student’s solution using make a list

Figure 5: A student’s solution using guess and check
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4. Conclusion

| have discussed five different strategies used by students in solving the given non-routine problem. Mathematics teachers are often encouraged to
show different strategies to solve a given problem. The intent is to promote creative thinking among the students and to dispel the common belief
that a mathematics problem always has only one correct strategy. The implication for teaching is that, with several strategies at hand, mathematics
teachers may be able to choose and show the most suitable strategy to address individual differences among the students. This will also provide
opportunities for the students to think a little more about the problem and allow them to learn from other students’ way of solving the problem. To
some students, this new solution may be a more elegant solution than their own original solution; thus this may give more insights into the diverse
metacognitive processes of solving this problem.

Teachers may think of different strategies for solving the same problem but more importantly, discussing strategies actually used by their peers adds
a more realistic feel and touch to the lessons. Examples can be drawn from the strategies discussed above. In addition, students can be asked to
evaluate solutions that are partially correct, so that they can learn from the errors made by other students. Many of these partially correct solutions
conceal flaws in mathematics content knowledge and strategy use. Mathematics teachers will certainly agree that unpacking these flaws together
with the students will engage them in extending their thinking. The teachers should find this information useful in planning lessons that address the
diversity of students’ responses.

5. References
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242-273.

Piaget, J. (1950). The psychology of intelligence. London: Routledge & Kegan Paul Ltd.
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Enriching A Lesson on Pythagoras’ Theorem

Ho Foo Him
National Institute of Education, Singapore

Pythagoras’ Theorem is one of the oldest and most frequently used Mathematics theorems which can be proved in many
different ways. A fundamental and important theorem that is studied in many Mathematics curricula around the world,
Pythagoras’ Theorem is also included in our Secondary 2 Mathematics syllabus. All text books provide quite a good
number of examples and problems for teachers and students in the teaching and learning of this theorem. However, there
are other interesting applications of this theorem that may enrich our students’ learning experiences, provide them with
opportunities to delve deeper and thus enabling them to gain a different perspective of the theorem. In this write-up, |
would like to share some teaching ideas and examples that may excite students and hopefully inspire them to explore and
investigate beyond what they have learnt from the text books.

Using GSP to Enrich a Lesson on Pythagoras’ Theorem
Generally, students tend to remember what they have learnt if they discover or construct the knowledge themselves and
make sense of what they are taught. In this respect, learning activities promoting investigation and exploration is one

approach that can be used in our lesson to motivate and engage them deeply.

Here is a simple construction that a teacher can use to enrich the lesson on the application of Pythagoras’ Theorem. In the
following diagram, ABCD is a rectangle and P is a point inside the rectangle.

D C
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With the use of a Dynamic Geometry Software (DGS) such as GSP or Geogebra, students can work on teacher’s pre-
constructed DGS file that allows them to drag and observe the results on the computer screen. As a warm-up activity, the
teacher can ask the students to investigate if PA + PC = PB + PD in general. Where can they find the point P such that PA +
PC=PB+PD? Is PA*+ PC* = PB® + PD” always true?

Students should be able to observe that PA? + PC? = PB® + PD” whenever P is inside or on the perimeter of the rectangle.

Once they have discovered that pA? + PC? = PB? + PD? , teachers can then scaffold and guide them to prove this result by
using the Pythagoras’ Theorem as shown below.

D, C

Figure 1
Through P, a line segment EF which is parallel to DC can be constructed as shown in Figure 1.
Let ED =a, EA = b, PE = c and PF = d. By Pythagoras’ Theorem, PD*=a’ + cz, PB*=b’+ dz, PC=a"+d*and PA>=b>+C".
Thus the sums PA? + PC’ and PB® + PD? are both equal to o’ +b° + ¢ +d’. Thus we have proved that PA’ + PC’ = PB’ + PD’.

In addition, this easy proof can serve as an introduction to the notion of proof in Mathematics for Secondary 2 students.

This particular learning activity can be further enhanced by guiding students to use the result to solve a non-standard
problem as shown below.

Connecting Pythagoras Theorem to the visualisation of \/a+5b and \/E+\/l;

Mathematical errors such as /g +b :\/;4.\/5 (other similar errors are log(x +y) =log x + logy, (x + y)2 =x2+ y2 etc)
which Matz (1980) classified as linear extrapolation error . This is a class of errors that Secondary school students
commonly make. Besides using a numerical example to verify that \/a + b # J;+Jl;, we can use Pythagoras’ Theorem

to give students another perspective of \Ja+b #+a + \/E

Let me illustrate using the numbers /2 +8 = \/ﬁ and \/5+\/§

D iC
Figure 2 shows a square grid. Assume that the side of each square is 1 unit. /
By using Pythagoras Theorem, AB = /1+1 =+/2 units and BC = /22 +22 =48
Thus the length of ACis \/2 +4/8 . /
Similarly, AD = \/1+3%> =10 =+/2+8.

But clearly, AD # AC, thatis \/2+8 # \/§+\/§

Figure 2
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Connecting Pythagoras’ Theorem With Irrational Numbers

It is well known that by using Pythagoras’ Theorem, we can construct the length of \/72 where n is a positive integer as
shown in Figure 4, in which each triangle is a right-angled triangle.

Figure4

Can we construct a line segment to represent an irrational number \/; where x is a positive rational number? In a right-
angled triangle, let the hypotenuse be ¢, the base be a and the height be b.

let ;1 -=X andc—a=n, where0<n<+/x.
n

By Pythagoras Theorem, b”=c¢*— a’= (c +a)(c—a), we have b*=x.Thus b = \/;

As an example, we can then use this result to construct the length of \/10.4 . First of all, we choose the value of n such
that 0<n< +/10.4 . For simplicity, let n =1, then a+c=10.4and c—a = 1. Solving, c=5.7 and a = 4.7. So the right-angled

triangle with base a = 4.7 and the hypotenuse ¢ = 5.7 will have the height b =+/10.4 . In this activity, the students can
easily construct the height using a pair of compasses and a ruler.

If weletn=2,thena+c=5.2 and c—a =2.Solving, c=3.6 and a =1.6. We realize that there are more than one way to
construct the length of \/10.4 .
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Conclusion

Teachers should provide students more than one class of examples and questions for them to appreciate that Pythagoras
Theorem can be applied in a great variety of ways. In doing so, students’ learning experiences of the theorem will be
enriched and thus providing impetus for students to make mathematical connections and develop a deeper understanding
of the theorem.

Reference

Matz, M. (1980). Towards a computational theory of algebraic competence. Journal of
Mathematical Behaviour, 3(1), 93 — 166.

Infusing Metacognition in the Teaching of Calculus

Toh Tin Lam
National Institute of Education, Singapore

Knowledge of cognition refers to (i) what individuals know what about their cognition, (ii) how to use strategies and other
procedures, and (iii) why and when to use a particular strategy. Metacognition is defined as the knowledge and regulation
of cognition (Brown, 1978, Flavell, 1979, Schraw, 2001). Regulation of cognition typically includes planning, monitoring,
and evaluation.

Research in mathematics education has documented consistently a positive relationship between metacognition and
mathematics performance (for example, Schneider and Artelt, 2010). Intervention programs have been developed with the
aim to improve children’s metacognitive knowledge as well as their metacognitive skills. A key finding from most of the
intervention programs generally shows that students with training in their metacognitive awareness generally performed
better than those not exposed to such training.

Problem solving has been the heart of the Singapore mathematics curriculum since the 1980s. According to the framework
(Figure 1), it is flanked by five equally important components represented by the five sides of the pentagon. One of these
essential components of problem solving is metacognition, for which the essential features are “Monitoring of one’s own
thinking” and “Self-regulation of learning”.

Figure 1. Framework of the school mathematics curriculum

Of the five components, it is a truism that teachers generally focus on three components; Skills, Concepts and Processes,
which are directly related to the students’ high-stake national examinations. Generally, students are not assessed on
Attitudes and Metacognition, in any typical paper-and-pencil test.

On this note, the author wishes to highlight that the infusion of metacognition in teaching traditional school mathematics

could deepen students’ understanding of mathematical concepts and the relation across concepts. The topic calculus is
chosen for discussion.
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Mathematics — even the most procedural tasks which are seemingly meaningless to students should be taught in such a
way that it makes sense to students. Mathematics lessons should provide students with ample opportunities to seek and
find explanations for their observations. One way of engaging students in reasoning process and regulating their own
learning processes is to have them examine and explain an error (Carroll, 1999). The two examples below serve to
illuminate this point.

Example 1. Use of students’ errors for their own learning

Learning differentiation techniques is usually seen as a rather procedural task without much meaning to students.
However, acquiring such techniques is an essential component of learning calculus. The rules of differentiation (e.g.
addition rule, product rule, chain rule, quotient rule), even if acquired, are easily forgotten.

Teachers could collate examples of sample students’ errors in applying differentiation rules and turn this into a worksheet
which requires students to identify and explain the errors. A sample of the activity is shown in Activity 1. This activity
demonstrates that, in addition to the standard practice questions on applying the various differentiation techniques,
students could be engaged in explaining the errors based on the various rules of differentiation. The comment column in
Activity 1 provides opportunity for students to reflect on the errors in each of the statements of differentiation in the
worksheet. This provides opportunity for them to regulate their own learning and have a deeper appreciation of the
various differentiation techniques. Teachers could design similar tasks for other topics, e.g. integration techniques, within
calculus and beyond. A sample of students’ comments is shown in Activity 1. However, teachers are reminded that the
sample of students’ comments should NOT be treated as a “model answer” which students must conform; rather, it should
be seen as the reasoning we would expect students to be engaged in such an higher order thinking task.

Example 2. Use of close confusers

Teaching of the various techniques of differentiation is done sequentially. Students are usually given practice questions
after learning each new differentiation technique. These practice questions almost always focus on the newly acquired
rule. Opportunity should be provided for the students to have a closer examination of the various rules after learning
these rules in different segments. The author suggests that a close confuser exercise, as demonstrated in Activity 2, could
be used. It is clear from the different questions in Activity 2 that every part of the question requires a different
differentiation technique. This activity provides students to examine all the rules of differentiation techniques more
carefully. It should be remarked that it is not difficult for teachers to generate such tasks for their students.

Activity 1

What went wrong??? Spot the mistake —how should the correct solution be? Fill in the comment section in the space provided.

WORKING COMMENT

d Qx+ 3)3 C3x+ 3)2 Used the wrong formula. Must multiply by 2.
dx B

i(ax +b)" =n(ax+b)""a
dx

i(zx)4 = 4(2x)° = 3247 Should use the formula i(ax +b)" =n(ax +b)"a
dx dx Witha =2, b5=0,n=4. He can also

simplify it to 16x* and then get 64x°.

d . » . Forgot to differentiate the sin x. Used wrong formula. Should be
—sin” x = 2sinx

dx
d . n s\ -1
—(sinx)" =n(sin)"" cosx
dx . Forgot a cosx outside.

d . . d .
5(3005 x)=0x(-sinx)=0 | No! Keep the “3”. The correct formula is — (3 cos x) = 3(—sin x) = —3sin x.
dx

—xlnx = x|

dx

1 Must use product rule. Keep x, and differentiate In x. Then must add to keeping In x and
— =1 differentiate x.
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WORKING COMMENT

. . . D - . 2. 2
4023 _ o0y 430242 , | Differentiate with respect to x, so C is constant. Correct formula is 3Cx".
dx
where C is a constant. Differentiate C” is zero!
4 3w _ (3x)23%1 When we use the formula i(x)" -
X dx

, the number 7 is a constant. Here, the power is not a

ia/’(-’f) _ f'(x)a/m Ina

constant. Must use the formula for @X

d(x+2 d This is not correct. Must write (x + 1) and then apply product rule.
— =—(x+2)(x+1)

dx\ x+1 dx

We can also use Quotient Rule directly.

=(x+2)+(x+D)=2x+3

d (x + 2) d (x+ )+ The last step was wrong. There should be apair of bracket for -1 in the second step.

E x+1 dx

— (42 -1+ D)2+ x+ )7L
1

=x+2- 7t
(x+1= x+1
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Conclusion

This note presents sample of two activities on how even procedural tasks in mathematics can also be converted to higher order
thinking tasks that enhance metacognition. It is not difficult for teachers to create such meaningful activities for their students
in mathematics classrooms.
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Ask Dr Maths Teaching

1. 1 would like to seek your view on what to leave in the final answer for the following forms: in the exact form with a few
terms or round it to 3 significant figure for the Additional Mathematics syllabus:

a)  In(1d)+1

b) e+e’+2

c) \/__%

Response:
| would write ln(%) + 1 and leave the rest in the exact form, or more precisely in the closed form. There are also reasons

to write in decimals. | shall explain below.

One hour has 60 minutes. Why 60 minutes? It is because 60 is the smallest number divisible by 2, 3, 4, and 5. Why do we
teach fractions in the primary school with denominators not exceeding 12? It is because 12 is the smallest number divisible
by 2, 3, and 4. During the days of fractions, 60 or 12 is preferable to 10.

1% is a poor notation. It was invented to make good sense of a fraction. Definitely, 1% is more meaningful or easier to

understand than % The use of 1% leads to an error of /{4%} = 2%. That is why we said 1% is a poor notation. That is

why we prefer In(3) + 1.

We are used to 7 = % or more accurately 77 as 2—72 Now we write 3.14 or 3.1416. Now in additional mathematics, we

write sin 60° = 0.866 instead of g For computation, it is easier to use decimals than to use fractions. Also, in the closed

form, we do not know the size of the value of an answer. Hence sometimes we want to express an answer in decimals. We
do it only at the end. Asking students to find the sum whenever they see an addition of two numbers may not be a wise
move. It introduces unnecssary errors, and it makes it harder to check errors, if any, later on.

2. Burning question on estimation (CA: Question in Section B of P4 mathematics booklet; a 2 mark question)
6380+9 = +9

Is 6300 the only answer?

Should these answers 6381, 6372, 6399 given by pupils be accepted? Please advise!

Response:

Increasing use of decimals makes approximation a more important topic in the primary school syllabus. In fact,
approximation was proposed to be introduced in the primary school syllabus in Singapore as early as 1969 before many
other countries.

Pupils are not expected to know that 6300 is divisible by 9 because the sum of the digits of 6300, namely 6+3+0+0, is

divisible by 9. If we accept 6300 as a possible answer for the above reason, then there is no reason not to accept 6381,
6372, and 6399 as answers. The aim is to produce an integer approximation, and not to simplify the computation.
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If the reason for the question is to test the multiplication of 9, then a natural answer is 6300. This helps simplify the
computation. Therefore we do not proceed further to 6381 etc. The burning question may be that of teachers. It may not
be that of pupils.

O-Level Calculus Questions:-

1. In the formula i(sin X) = cosx’ it is stated that x must be measured in radian.
dx

I am always puzzled why x cannot be measured in degrees.

Response:

From i(sin x) = cosx - We know that the gradient of the graph of y=sinxatx= 0is cos 0= 1. To understand the

reason why x must be in radians and not in degrees, we shall examine the special case of derivation of the derivative of sin
x at x = 0 from first principles:

(i (sin x)) - lim sin(0+6x)—sin0 _ lim sin 6x
dx x=0 8x-0 Sx = 8x-0 50

iné .
Let’s work out the values of = when §x = 0.0001° and when 8x = 0.0001 radians.

5x

in &. S . . iné.
We see that when §x = 0.0001°, % 2~ 0.0175 which is not close to 1 while when §x = 0.0001 radians, S2% ~ 1.0000.
d . . ) ) . )
In the formula a(sm X) =cosx, x mustbe measured in radians since from the proof of this formula by first
principles, we need to use limg,_, Slgxx = 1 which holds if & is in radians.
If x is in degrees, then converting x degrees to radians, we have 3 (sinx°) = i(sinﬁJ =2 cos 2= 2 _cos e,
dx de(” 180) 180 180 180
.Is the formula =_(,7 )= ,;"! true when n is a non-integer rational number? at about the case when n is an
2.Is the formula 9 (7)) _ ;"1 true when nii int tional number? What about th henni
dx

irrational number?

Response:

In fact, the formula i(x" ): nx""!is true for n real which includes non-integer rational number and irrational number.
d (2 d e

So the formula works for — (xZ) and — (x®).
dx dx

One possible way to show that the formula holds is to rewrite x” as e*™) = "X \here n is any real number.

Then %(x" )= %(e” 1“")= e %(nlnx) =e" '""(g) = x”[g) =nx"".

3. In the question:
“Find the coordinates of the stationary point on the graph of y = (x — 3)% + 1, determine the nature of this stationary point”.

My students are able to obtain the coordinates (3, 1). However, one of my students insists on not using the first derivative
or the second derivative test. He argues like this:

When x = 3, y = 1. You see that when x is bigger than 3, y is obviously greater than 1; when x is smaller than 3, y is also
obviously greater than 1. Hence it must be a minimum point. In fact, he likes to use this type of argument to conclude the
nature of stationary points. Is this type of arguments acceptable? Please enlighten me.

Response:

This type of argument is acceptable, though not encouraged, for the graph of a quadratic polynomial as there is only one
stationary point on such graph. In general, such arguments are not valid. Consider the graph of y = (x — 2.99)(x — 3)3 + 1.
Note that (3, 1) is a stationary point. When x is bigger than 3, y is obviously greater than 1. When x is smaller than 3, if the
student chooses a value smaller than 3, say 2, 2.5 or even 2.9, then y is greater than 1. The student will then conclude that
(3, 1) is @ minimum point which is not true as (3,1) is in fact a stationary point of inflexion in this case. The first derivative
test requires one to check the sign Of% at x = @ and x = a". So for the example above, the problem arises as there is
another stationary point (2.99,1) which is very close to the other stationary point (3,1). So the student should use values of
x very close to 3, for example, 2.999 and 3.001 to check the sign of Z—z. By not using the first derivative test or the second
derivative test, the student will come to wrong conclusions especially for more complicated graphs and for graphs whereby
the coordinates of the stationary points are very close together.
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4. |s there any difference between “stationary point” and “turning point”? Please help me.

Response:

There is definitely a difference between “stationary point” and “turning point”. In fact, a turning point is a stationary point,
but a stationary point is not necessarily a turning point. Maximum points, minimum points and stationary points of
inflexion are stationary points whereas only maximum points and minimum points are turning points; a stationary point of

. L . . . . d
inflexion is not a turning point. As what the name suggests, there must be a “turn” at a turning point. Soé = 0 at both

. . . . . . -, N L d
stationary points and turning points, but at a turning point, you need the addition criteria of a change in sign of d—z from
positive to zero to negative or from negative to zero to positive in the neighbourhood of the turning point.

2 2
. My students always have this understanding =~ means that the graph has a minimum point while = means it
5. My students always have this understandi d{>0 hat the graph has a mini int while 42 _ i
dx dx
has a maximum point. Something is not quite right, but | don’t know what is exactly wrong with it.
Response:
2
Consider the graph of y = €*. Note that% = e* which is always positive. But the graph of y = €* has no minimum point.
2
y

Similarly, for y = In x, % = —x—12 which is negative for all positive x, but the graph of y = In x has no maximum point. Ifj—z =0

2 2
and 47 > pat x = g, then we can conclude that x = a is a minimum point. Similarly, ifj—z =0and 4V <patx=a, then we
2 2

. . : . - -, d
can conclude that x = a is a maximum point. Your students have omitted the additional condition that d—i =0.

2
6. If d’y — () ata particular point on a graph, then it must be a point of inflexion. Is this always true?
2

Response:
2
Consider the graph of y = x*. Note that % = 12x2 which is equal to 0 at x = 0 but (0, 0) is a minimum point on the graph of y =

2
x*. Another example is the graph of y = —(x+1)6. Then % = —30(x + 1)* which is equal to 0 at x = -1 but (-1, 0) is a maximum

2
point on the graph of y = —(x+1)6. So d% — () at a particular point on a graph does not imply that the point must be a point of
dx

. . -, . . L Py . . .
inflexion. You need the additional criteria that there is a change in sign in d—x{ in the neighbourhood of the point. However, if

, , ) . o d? )
you know that a particular point on a graph is a point of inflexion, then you can conclude that 7)2/ = () at that point. We say
dx

2
that “ d’y — ()" is a necessary but not a sufficient condition for point of inflexion.
de
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