

The anomaly of MI in the JC syllabus

- Not within any field of mathematics but rather it is a technique.
- This 'abnormality' would perhaps suggest a different way of teaching.
- This workshop sets the pedagogy of the technique of mathematical induction within its natural environment of problem solving where
- a problem is explored,
- a conjecture is made,
- and an attempt to prove the conjecture using some techniques is made on the basis of the earlier exploration.

ex•pe•ri-ence [ik-speer-ee-uh ns] noun

- a particular instance of personally encountering or undergoing something: My encounter with the bear in the woods was a frightening experience.
- the process or fact of personally observing, encountering, or undergoing something: business experience.
- the observing, encountering, or undergoing of things generally as they occur in the course of time: to learn from experience; the range of human experience.
- knowledge or practical wisdom gained from what one has observed, encountered, or undergone: a man of experience.
- Philosophy. the totality of the cognitions given by perception; all that is perceived, understood, and remembered.

Learning Experience

- Must be personal
- Must be memorable

- Must be understood

Problem 1

Find and prove some number patterns from the pyramid of consecutive odd numbers below where the n-th row contains n odd numbers.
1

| | | | 3 | | 5 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 7 | | 9 | | 11 | | |
| | 13 | | 15 | | 17 | | 19 | |
| 21 | 23 | | 25 | | 27 | | 29 | |

Polya's Problem Solving Strategy

Problem 2

Make a conjecture for a formula in closed form for the series

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots+\frac{1}{n \times(n+1)} .
$$

Use mathematical induction to prove your conjecture.

Problem 2

- Let students 'see’ your problem solving framework by writing down the 'template' on a portion of the whiteboard.
- The overarching strategy will then be more clear and students can be scaffolded.
- Use UP, DP, CP, C/E.

Smart as Einstein

- "Thinking out of the box" is often misused when people do so without first "mastering the box"!
- The discipline of mathematics renuires working within the s (or conditions).

Smart as Einstein

Here is a proof by mathematical induction that you are as smart as Einstein! Theorem: I am as smart as Einstein.
Proof: Let $\mathrm{P}(n)$ be the statement: All n persons in a group containing n persons have the same IQ.
$P(1)$ is obviously true.
Suppose $\mathrm{P}(k)$ is true for some positive integer k.
Take a group X of $k+1$ persons.
Remove a person A from the group, leaving behind a group X^{\prime} of k persons.
By the induction hypothesis, all the k persons in X^{\prime} have the same IQ.
Remove a person B from X^{\prime} and put back the first removed person A, thus
forming a set $X^{\prime \prime}$ of k persons. By the induction hypothesis, all the k persons in X " have the same IQ.
Finally, put back the second removed person B to re-form the group X with $k+1$ persons, all of whom have the same IQ. Thus if $\mathrm{P}(k)$ is true, then $\mathrm{P}(k+1)$ is also true
Since $\mathrm{P}(1)$ is true and $\mathrm{P}(k) \Rightarrow \mathrm{P}(k+1)$, by mathematical induction, $\mathrm{P}(n)$ is true for all positive integers n, i.e. all n persons in a group containing n persons have the same IQ. Finally, put me in a group with Einstein, and I will be as smart as he is!

H3 Problems

Find the number of squares in an n by n grid consisting of 1 by 1 square cells. (The figure shows a 7 by 7 grid.)

H3 Problems

A tower of n circular discs of different diameters is stacked on one of the three vertical pegs as shown below.

The task is to transfer the entire tower to another peg by a number of moves subject to the following rules:
(i) each move carries exactly one disc; and
(ii) no disc can be placed on a smaller one.

What is the minimum number of moves required to accomplish the task?

