Assessment in Mathematics: Starting from Error Analysis

AME-SMS CONFERENCE 2014

5 June 2014, Thursday

Presenters

Teo Soh Wah
Ong Bee Teng
Soh Poh Suan
Yeo Cheng Yong
Sim Puay Hoon
Lek Mei Xuan
Jasmine Ng SM

Nan Hua High School
Anglo-Chinese Junior College Clementi Town Secondary School Fuhua Secondary School Nan Hua High School Shuqun Secondary School Unity Secondary School

Assessment drives

 student learning.
Assessment vs Evaluation

 Check \& Coach : Check \& Grade to Exce (llence!

Using Error Analysis to Increase Student Understanding of Math Concepts

What is Error Analysis?

The study of kind of and quantity of error that occurs particularly in the fields of Mathematics

Purpose of Error Analysis

Objective of Project

To use error analysis as an assessment tool to enable
teachers to better adjust their instructional strategies so
as to help students construct a clear concept image

Concept Image

Consists of all the cognitive structure in the individual's mind that is associated with a given concept
(Vinner, 1983)

$$
\begin{aligned}
8^{m} \times 8^{2}=8^{2 m} & =64^{m} \quad \text { WRONG concept image } \\
8^{m} \times 8^{2} & =8^{m+2} \quad \text { CORRECT concept image }
\end{aligned}
$$

Literature Review

Error analysis existed from as early as 1930 and has extended into the $21^{\text {st }}$ century
(Ayres, 2001; Ben-Zeev, 1998; Edwards, 1930; Guiler, 1932; Hart, 1987; Radatz, 1979; Schield, 1999)

Literature Review

Vygotsky's Social Cultural Theory

Students learn best if their teachers, as knowledgeable adults, are able to teach them in their zone of proximal development (ZPD)

Important that teachers understand students' difficulties and are able to address all the relevant common misconceptions during teaching

Literature Review

Good educators

- spend time to find out how to help students refute these common errors which are usually linked to some selfinvented intuitive rules or misconceptions
- tailor their instruction so that it meshes with students' thinking
(Dewey, 1933; Piaget, 1977)

Research Questions

What are the two most prevalent common errors students encounter in the learning of Indices and Calculus?

To what extent do the common errors predict students' achievement in Indices and Calculus?

Methodology

Data Collection

Design of instruments

- Instruments A and B were designed to detect possible common errors in Indices and Calculus respectively
- Each instrument was face validated by 6 professional Mathematics STs

- Minimal interruption of the teaching and learning practices in each school during the implementation stage was ensured

Data Collection

Administration of instruments

- Instrument A (Indices) administered to 274 Sec 3 (Grade 9) students
- Instrument B (Calculus) administered to 468 Sec 4 , JC1 and JC2 (Grade 10-12) students
- Recording of data was as follows:
- ' U ' : student was able to identify the conceptual error
- ' M ': student was able to apply the correct method
- 'A': student was able to obtain the correct answer

Data Collection

Table 1: Template used to record the data

Students \Qn	Type of mark	Q1	Q2	Q3	Q4	----	Q10	Total
Student 1	U							
	M							
	A							
Student 2	U							
	M							
	A							
	U							
	M							
	A							
Student n	U							
	M							
	A							

Data Collection (Indices)

	Question	Solution	Marking Scheme
7	Simplify $27 \times \sqrt[5]{3}$. Solution: $\begin{aligned} & 27 \times \sqrt[5]{3} \\ & =3^{3} \times 3^{\frac{5}{2}} \\ & =3^{\frac{11}{2}} \end{aligned}$	$\begin{aligned} & 27 \times \sqrt[5]{3} \\ & =3^{3} \times 3^{\frac{1}{5}} \\ & =3^{\frac{16}{5}} \end{aligned}$	Underline the mistake (U1) Provide correct solution (M1, A1) (If correct method is provided but answer is wrong, then M1 mark only)

Data Collection (Indices)

Question	Solution	Marking Scheme
Given $\frac{1}{\sqrt{8}} \times \sqrt[3]{4}=2^{k}$, find the value of k. Solution: $\begin{aligned} & \frac{1}{\sqrt{8}} \times \sqrt[3]{4}=2^{k} \\ & \frac{1}{8^{\frac{1}{2}}} \times 4^{\frac{1}{3}}=2^{k} \\ & \frac{1}{2^{\frac{3}{2}}} \times 4^{\frac{1}{3}}=2^{k} \\ & 2^{-\frac{2}{3}} \times 2^{\frac{2}{3}}=2^{k} \\ & \hline 2^{-\frac{2}{3}+\frac{2}{3}}=2^{k} \\ & 2^{0}=2^{k} \\ & k=0 \end{aligned}$	$\begin{aligned} & \frac{1}{\sqrt{8}} \times \sqrt[3]{4}=2^{k} \\ & \frac{1}{8^{\frac{1}{2}}} \times 4^{\frac{1}{3}}=2^{k} \\ & \frac{1}{2^{\frac{3}{2}}} \times 4^{\frac{1}{3}}=2^{k} \\ & 2^{-\frac{3}{2}+\frac{2}{3}}=2^{k} \\ & -\frac{3}{2}+\frac{2}{3}=k \\ & k=-\frac{5}{6} \end{aligned}$	Underline the mistake (U1) Provide correct solution (M1, A1) (If correct method is provided but answer is wrong, then M1 mark only)

Data Collection (Calculus)

Question	Solution	Marking Scheme
A curve is such that $\frac{d y}{d x}=2 x^{2}$. Given that the curve passes through the point $(3,2)$, find the equation of the curve. Solution: The equation of the curve is $\begin{aligned} & \frac{y=\left(2 x^{2}\right) x+c}{2=\left(2 \times 3^{2}\right)(3)+c} \\ & c=-52 \end{aligned}$ The equation is $y=2 x^{3}-52$	$y=\int 2 x^{2} d x=\frac{2 x^{3}}{3}+c$ When $x=3, y=2, c=-16$ \therefore The equation of the curve is $y=\frac{2 x^{3}}{3}-16$	Underline the mistake (U1) Provide correct solution (M1, A1) (If correct method is provided but answer is wrong, then M1 mark only)

Data Collection (Calculus)

	Question	Solution	Marking Scheme
8	Find the shaded area in the following diagram. Solution: $\begin{aligned} & =[-\cos x]_{0}^{\frac{3 \pi}{2}} \\ & =\left[-\cos \frac{3 \pi}{2}\right]-[-\cos 0] \\ & =0+1 \\ & =1 \text { unit }^{2} \end{aligned}$	$\begin{aligned} & \int_{0}^{\pi} \sin x d x \\ & =[-\cos x]_{0}^{\pi} \\ & =1+1 \\ & =2 \text { unit }^{2} \end{aligned}$ The shaded area $=2+1=3$ unit 2	Underline the mistake (U1) Provide correct solution (M1, A1) (If correct method is provided but answer is wrong, then M1 mark only)

Data Analysis

Data Analysis of the Indices Test

Errors Detected (Indices Test)		\sum	274
Q1	U1	249	91%
Applying zero index of a variable to its coefficient	M1	242	88%
	A1	234	85%
Q2	U2	261	95%
	M2	273	100%
Applying the operation (e.g. division) of the expression to the index of the variable	A2	271	99%

Data Analysis of the Indices Test

Errors Detected (Indices Test)		\sum	274
Q3	U3	252	92%
Applying the index of the expression to the variable only	M3	261	95%
	A3	245	89%
Q4	U4	U4	254
Treating negative index as a negative sign to the			
coefficient			

Data Analysis of the Indices Test

Errors Detected (Indices Test)		\sum	274
Q5	U5	256	93%
Applying the operation (e.g. product) of the expression to the indices of the variable	M5	262	96%
	A5	249	91%
Q6	U6	236	86%
		M6	247

Data Analysis of the Indices Test

Errors Detected (Indices Test)		\sum	274
Q7	U7	235	86%
	M7	251	92%
Treating the index of nth root as $\frac{n}{2}$	A7	248	91%
	U8	199	73%
		M8	239
Treating $\frac{1}{a^{n}}$ as $a^{-\frac{1}{n}}$	87%		
		A8	229

Data Analysis of the Indices Test

Data analysis per school on U,M \& A

Descriptive statistics of collected data for Indices Test

$\left.\begin{array}{|l|l|c|c|c|}\hline & \text { Indices } & \begin{array}{c}\text { Underlining } \\ \text { the error (U) }\end{array} & \begin{array}{c}\text { Correct } \\ \text { method (M) }\end{array} & \begin{array}{c}\text { Correct } \\ \text { answer (A) }\end{array} \\ \hline \begin{array}{l}\text { Sec 3 } \\ \text { (School A) }\end{array} & \begin{array}{l}\mathrm{n} 1=77 \\ \text { (2 classes) }\end{array} & 72 \% & 88 \% & 83 \% \\ \hline \begin{array}{l}\text { Sec 3 } \\ \text { (School B) }\end{array} & \mathrm{n} 3=124 \\ \text { (4 classes) }\end{array}\right)$

Data Analysis of the Indices Test

Participants' performance in the two most prevalent common errors

Errors Detected (Indices)	$\begin{gathered} \text { School C } \\ \text { (Sec 3) } \\ \mathrm{N}=73 \end{gathered}$			$\begin{gathered} \text { School B } \\ \text { (Sec 3) } \\ \mathrm{N}=124 \end{gathered}$			$\begin{gathered} \text { School A } \\ \text { (Sec 3) } \\ \mathrm{N}=77 \end{gathered}$			\sum	274
Q8	U8	96\%		U8	72\%		U8	52\%		199	73\%
	M8	93\%	3\%	M8	93\%	21\%	M8	73\%	21\%	239	87\%
$\begin{aligned} & \text { Treating } \overline{a^{n}} \\ & \text { as } a^{-\frac{1}{n}} \end{aligned}$	A8	90\%	3\%	A8	93\%	0\%	A8	62\%	10\%	229	84\%

Data Analysis of the Indices Test

Participants' performance in the two most prevalent common errors

Errors Detected (Indices)	$\begin{gathered} \text { School C } \\ \text { (Sec 3) } \\ \mathrm{N}=73 \end{gathered}$			$\begin{gathered} \text { School B } \\ \text { (Sec 3) } \\ \mathrm{N}=124 \end{gathered}$			$\begin{gathered} \text { School A } \\ \text { (Sec 3) } \\ \mathrm{N}=77 \end{gathered}$			235	$274$86\%
Q7	U7	97\%		U7	98\%		U7	56\%			
Treating	M7	95\%	3\%	M7	97\%	1\%	M7	81\%	25\%	251	92\%
the index of $n t h$ root as $\frac{n}{2}$	A7	95\%	0\%	A7	94\%	2\%	A7	81\%	0\%	248	91\%

Correlations between Achievement in Indices Test and the identified Common errors

Indices TestAchievement in IndicesTestIndices_ common error

Test

Indices_common_ error
1.000
.981
.9811.000

Model Summary for the Indices Test

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
	.981	.963	.962	4.23414

The prediction of the achievement in Indices test with those two items with most prevalent common errors is statistically significant with $F(1,271)=6972.61$ and $p=0.000$.

Data Analysis of the Calculus Test

Errors Detected (Calculus Test)		\sum	468
Q1 Treating Product Rule as product of differentiated expressions	U1	409	87%
	M1	433	93%
	U2	M2	389
	322	83%	

Data Analysis of the Calculus Test

Errors Detected (Calculus Test)		Σ	468
Q3 Omission of brackets in the application of Quotient Rule	U3	387	83\%
	M3	408	87\%
	A3	371	79\%
Q4 Algebraic error in equating denominator to zero to find the turning point	U4	260	56\%
	M4	250	53\%
	,		-

Data Analysis of the Calculus Test

Errors Detected (Calculus Test)		\sum	468
Q5 Evaluating $\int \frac{1}{f(x)} d x$ as $\ln f(x)$	U5	358	76\%
	M5	294	63\%
	A5	287	61\%
Q6 Treating integration of trigonometric functions as integration of polynomials	U6	378	81\%
	M6	322	69\%
	\cdots		

Data Analysis of the Calculus Test

Errors Detected (Calculus Test)		\sum	468
Q7 Treating $y=m x+c$ as an equation of the curve	U7	325	69\%
	M7	359	77\%
	A7	329	70\%
Q8 Treating area of region below x -axis as a positive integral value	U8	264	56\%
	M8	358	76\%
	$\Delta \Omega$	2FA	57\%

Data Collection (Calculus)

Data Collection (Calculus)

Question

7 A curve is such that $\frac{d y}{d x}=2 x^{2}$.
Given that the curve passes through the point $(3,2)$, find the equation of the curve.
Solution:
The equation of the curve is
$y=\left(2 x^{2}\right) x+c$
$2=\left(2 \times 3^{2}\right)(3)+c$
$c=-52$
The equation is $y=2 x^{3}-52$

Treating $y=m x+c$ as an
equation of the curve

	\sum	468
U7	325	69%
M7	359	77%
A7	329	70%

Data Analysis of the Calculus Test

Errors Detected (Calculus Test)		\sum	468
Q9 Treating variable as constant	U9	135	29%
	M9	156	33%
	A9	76	16%
Q10			
Treating parameter as constant	U10	73	16%
		M10	59
	13%		

Data Analysis of the Calculus Test

Data analysis per school on U,M \& A
Descriptive statistics of collected data for Calculus test

	Calculus	Underlining the error (U)	Correct method (M)	Correct answer (A)
Sec 4 (School D)	N1 = 73 (2 classes)	47%	56%	50%
Sec 4	N2 = 354			
(School E)	(13 classes)	68%	62%	55%
J1	N3 = 25	74%	79%	67%
(School F)	(1 class)			
J2	N4 = 16	26%	90%	83%
(School F)	(1 class)			
Average (\%)	N = 468	63%	63%	56%

Data Analysis

Participants' performance in the two most prevalent common errors (JC)

Errors Detected (Calculus Test)	$\begin{aligned} & \text { School F (J2) -- } \\ & \mathrm{N}=16 \end{aligned}$			School F (J1) $\mathrm{N}=25$		$\%$ 41 66%	$\begin{aligned} & \text { School E } \\ & (\text { Sec 4) } \\ & N=354 \end{aligned}$		$\begin{aligned} & \text { School D } \\ & (\text { Sec 4) } \\ & \mathrm{N}=73 \end{aligned}$		$\sum$$378$	$\begin{array}{\|l\|} \hline 468 \\ \hline 81 \% \\ \hline \end{array}$
Q6	U6	25\%		92\%			88\%		56\%			
Treating integration of	M6	88\%	-63\%	96\%	-4\%	93\%	79\%	9\%	8\%	48\%	322	69\%
integration of polynomials	A6	88\%	0\%	92\%	4\%	90\%	76\%	3\%	8\%	0\%	311	66\%

Data Analysis

Participants' performance in the two most prevalent common errors (JC)

Errors Detected (Calculus Test)	School F (J2) $N=16$			School F (J1) $\mathrm{N}=25$		$\begin{gathered} \% \text { of } \\ 41 \end{gathered}$	$\begin{gathered} \text { School E } \\ \text { (Sec 4) } \\ \mathrm{N}=354 \end{gathered}$		$\begin{gathered} \text { School D } \\ \begin{array}{c} \text { (Sec 4) } \\ \mathrm{N}=73 \end{array} \end{gathered}$		\sum	468
Q5	U5	19\%		84\%		59\%	84\%		51\%		358	76\%
Evaluating $\int \frac{1}{} d x$	M5	75\%	-56\%	92\%	-8\%	85\%	62\%	22\%	56\%	-5\%	294	63\%
$\begin{aligned} & f(x) \\ & \text { as } \ln f(x) \end{aligned}$	A5	75\%	0\%	92\%	0\%	85\%	61\%	1\%	49\%	7\%	287	61\%

Data Analysis of the Calculus Test

Participants' performance in the two most prevalent common errors (JC)

Errors Detected (Calculus Test)	School F$\begin{gathered} (\mathrm{J} 2) \\ \mathrm{N}=16 \end{gathered}$			School F (J1) $N=25$			$\begin{gathered} \text { School E } \\ (\text { Sec 4) } \\ \mathrm{N}=354 \end{gathered}$			$\begin{gathered} \text { School D } \\ \text { (Sec 4) } \\ N=73 \end{gathered}$			\sum	468
Q8 Treating	U8	19\%		U8	76\%		U8	59\%		U8	45\%		264	56\%
below x - axis as a	M8	94\%	-75\%	M8	72\%	4\%	M8	75\%	-16\%	M8	82\%	-37\%	358	76\%
integral value	A8	81\%	13\%	A8	44\%	28\%	A8	54\%	21\%	A8	68\%	14\%	266	57\%

Data Analysis of the Calculus Test

Participants' performance in the two most prevalent common errors (JC)

Errors Detected (Calculus Test)	School F (J2) $\mathrm{N}=16$			$\begin{gathered} \text { School F (J1) } \\ N=25 \end{gathered}$			School E (Sec 4) $N=354$			School D (Sec 4) $\mathrm{N}=73$			\sum	468
Q7 Treating	U7	19\%		U7	80\%		U7	76\%		U7	44\%		325	69\%
$\begin{aligned} & m x+ \\ & c \text { as an } \end{aligned}$	M7	94\%	-75\%	M7	84\%	-4\%	M7	75\%	1\%	M7	77\%	-33\%	359	77\%
equation of the curve	A7	88\%	6\%	A7	72\%	12\%	A7	69\%	6\%	A7	70\%	7\%	329	70\%

Correlations between Achievement in Calculus Test and the identified Common errors

Calculus Test

Achievement in
Calculus_common_error
Calculus Test

Achievement in Calculus
Test
1.000 .961

Calculus_common_error
. 961
1.000

Model Summary for the Calculus Test

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
	.961	.923	.923	5.28163

The prediction of the achievement in Calculus test with those two items with most prevalent common errors is statistically significant with $F(1,467)=5604.60$ and $p=0.000$.

Conclusion

For Indices and Calculus Test ($r=0.98$) $\quad(r=0.96)$

For Indices and Calculus Test (96\%)
 (92\%)

Students' scores
in the questions identified as
having the most
prevalent errors

High

Predictive
Power

Students'
overall
scores

Answer to the Research Questions

What are the two most prevalent common errors students encounter in the learning of Indices and Calculus?

Indices Test	Calculus Test
treating $\frac{1}{a^{n}}$ as $a^{-\frac{1}{n}}$	treating area of region below x- axis as a positive integral value
treating the index of nth root as $\frac{n}{2}$	treating $y=m x+c$ as an equation of the curve

Answer to the Research Questions

To what extent do the common errors predict students' achievement in Indices and Calculus?

- The total score of the two problems with common errors predicts 96% of the achievement in Indices Test.
- The total score of the two problems with common errors predicts 92% of the achievement in Calculus Test.

Limitations

- Lack of standardization in the instruction of administrating the research instruments
- The instruments were face validated without piloting

- The items used in the instruments were not statistically validated

Recommendations

- Interview students for reasons of not underlining the errors
- Standardize the instruction of administrating the research

- Pilot the instruments
- Validate the items used in the instruments statistically

Rectifying Common Error to Improve Performance in Assessment

Acknowledgements

We would like to thank the following people who have helped to make this workshop possible:

O Organisers of this conference

* Principals, Vice-Principals, HODs and Teachers for their support

测 Students of the various schools for their participation

Team members who are not present today but have contributed in one way or another to this project

2 fathers and 2 sons ate 3 eggs for breakfast, each eating exactly one egg.

How could that be?

Puzzle 1 Answer

There are three people - a grandfather, a father, and a grandson.

Therefore, the father is both a son (of the grandfather) and a father (of the grandson).

In the diagram, place the numbers 1 to 9 in the circles such that if you add up any side of the triangle, the sum is 17 .

Puzzle 2 Answer

The entire house will collapse exactly after twelve minutes.

To move, one must carry a fire extinguisher to keep the flames away.
Only two person can run through that hallway at one time.
But for others to go, one must return back with the fire extinguisher.

The fireman, is trained for such tasks and can run through the hallway in a minute.
The athlete can make it in two minutes.
The old woman can run slowly and will cover the hallway in four minutes.
The drunk guy will take five minutes to run through it.

If all of them can make it through the hallway in twelve minutes, all of them will be saved.

When two move together, they will run with the speed of the slower one.

How will all four of them manage to run to safety?

Puzzle 3 Answer

* First, the fireman and the athlete will go spending two minutes.
* The fireman will come back taking one minute.
* The drunk guy and the old lady will go spending five minutes.
* The athlete will come back taking two minutes.
* The athlete and fireman will go spending two minutes.

Two + One + Five + Two + Two = Twelve.

Thus all of them will be out of the house before it collapses.

Grace likes to collect money in a piggy bank. She bought a pink piggy bank when she was 10 years old. She put $\$ 250$ in the box on each of her birthday.

Her younger sister took \$50 out from Grace's piggy bank on her own birthday.

Grace decides to take out all the money when she is 50 years old to go for a longwaited holiday.

When the piggy bank was opened, it has $\$ 500$. How can that be possible?

Puzzle 4 Answer

The girl was born on 29 February. Thus her birthday came once in four years only while her sister was born on a normal day and celebrated her birthday every year.

Thus the girl had a chance of depositing money only 10 times in 40 years through which she collected $\$ 2500$ while her sister took $\$ 50$ from the piggy bank every year making the total amount to be $\$ 2000$.

Thus when the piggy bank was opened, it had just $\$ 500$.

At a party, everyone shook hands with everybody else.
There were 66 handshakes.
How many people were at the party?

Puzzle 5 Answer

Ans: 12

In general, with $(n+1)$ people, the number of handshakes is the sum of the first n consecutive numbers: $1+2+3+\ldots+n$.

Since this sum is $n(n+1) / 2$, we need to solve the equation $n(n+1) / 2=$ 66.

This is the quadratic equation $n^{2}+n-132=0$. Solving for n, we obtain 11 as the answer and deduce that there were 12 people at the party.

Since 66 is a relatively small number, you can also solve this problem with a hand calculator. Add $1+2=+3=+\ldots$ etc. until the total is 66 . The last number that you entered (11) is n.

