Instrument A-- Detect common errors in Indices in Elementary Mathematics

Laws of Indices

Name : _____ ()

Class: _____

The following shows the solutions given by a student in one of his tests. You are to check his workings and **underline** any mistakes that you can find. For any mistakes found, you are to provide your correct solution in the space provided.

		Your solutions
Q1	Evaluate $-2x^0 + 7^0$	
	Solution :	
	$-2x^{0}+7^{0}$	
	= 1 + 1	
	= 2	
Q2	Simplify $a^{10} \div a^2$	
	Solution :	
	$a^{10} \div a^2$	
	$=a^{\frac{10}{2}}$	
	$=a^5$	
Q3	Simplify $(-3 \times 2p)^3$	
	Solution :	
	$(-3 \times 2p)^3$	
	$(-3 \times 2p)^{3}$ = $(-3 \times 2p^{3})$ = $-6p^{3}$	
	$=-6p^3$	
Q4	Simplify $\left(\frac{2}{x}\right)^{-3}$	
	Solution :	
	$\left(\frac{2}{x}\right)^{-3}$	
	$ \begin{pmatrix} -x \\ x \end{pmatrix} $ = $\frac{-8}{x^{-3}}$ = $-8x^3$	
	$=-8x^{3}$	

Q5	Simplify $8^m \times 8^2$	
	Solution :	
	$8^m \times 8^2$	
	$=8^{2m}$	
	$= 64^{m}$	
Q6	Express -9^{-1} as a power of 3.	
	Solution :	
	-9 ⁻¹	
	$=-3^{2-1}$	
	= -3	
07		
Q7	Simplify $27 \times \sqrt[5]{3}$.	
	Solution :	
	$27 \times \sqrt[5]{3}$	
	$=3^3 \times 3^{\frac{5}{2}}$	
	$=3^{\frac{11}{2}}$	
Q8	1 _	
X °	Given $\frac{1}{\sqrt{8}} \times \sqrt[3]{4} = 2^k$, find the value of k.	
	Solution :	
	$\frac{1}{\sqrt{8}} \times \sqrt[3]{4} = 2^{k}$ $\frac{1}{\frac{1}{8^{2}}} \times 4^{\frac{1}{3}} = 2^{k}$ $\frac{1}{2^{\frac{3}{2}}} \times 4^{\frac{1}{3}} = 2^{k}$	
	$\frac{1}{1} \times 4^{\overline{3}} = 2^{k}$	
	8 ²	
	$\frac{1}{1} \times 4^{\frac{1}{3}} = 2^{k}$	
	$2^{\frac{3}{2}}$	
	$2^{-\frac{2}{3}} \times 2^{\frac{2}{3}} = 2^{k}$	
	$2^{-\frac{2}{3}+\frac{2}{3}} = 2^k$	
	$2^{0} = 2^{k}$	
	<i>k</i> = 0	

Instrument BDetect common error in Calculus in Additional Mathematics and H2
Mathematics

Math	ematics		
	The following shows the solutions given by a student in one of his tests.		
	You are to check his workings and underline any mistakes that you can find.		
	For any mistakes found, you are to provide your correct solution in the space provided.		
		Your solutions	
01			
Q1	Eind $d\left(u^{4}u^{10}\right)$		
	Find $\frac{d}{dx}(x^4x^{10})$.		
	Solution		
	$-\frac{d}{dx}\left(x^4x^{10}\right)$		
	dx		
	$=(4x^{3})(10x^{9})$		
	$=40x^{12}$		
Q2	d(-2)		
Q∠	Find $\frac{d}{dx} \left(\sin 4x^2 \right)$		
	Solution		
	$\frac{d}{dx}(\sin 4x^2)$		
ļ	$=\cos 4x^2$		
Q3	Given $y = \frac{2x-1}{3-x}$, find $\frac{dy}{dx}$.		
	5 1 41		
	Solution		
	$dy 2 \times 3 - x - 2x - 1 \times -1$		
	$\frac{dy}{dx} = \frac{2 \times 3 - x - 2x - 1 \times -1}{(3 - x)^2}$		
	6 - x - 2x + 1		
	$=\frac{6-x-2x+1}{(3-x)^2}$		
	$(3-x)^2$		
	$=\frac{7-3x}{(3-x)^2}$		
	$(3-x)^2$		
<u> </u>			
04			
Q4	Given $\frac{dy}{dx} = \frac{3}{dx}$ determine whether the surve has		
	Given $\frac{dy}{dx} = \frac{1}{(2-x)^2}$, determine whether the curve has		
	any stationary point.		
	Solution:		
	$\frac{dy}{dx} = 0$		
	$\frac{1}{dr} = 0$		
	<i>ux</i>		
	$\frac{3}{(2-x)^2} = 0$		
	$\frac{1}{(2-x)^2} = 0$		
	(2-x)		
	2 - x = 0		
	x = 2		
	There is a stationary point at $x = 2$		

Q5	^ 1
Q 5	Find $\int \frac{1}{x^2} dx$.
	Solution
	$\int \frac{1}{x^2} dx$
	$=\ln x^2 + c$
Q6	
X°	Find $\int \sec^2 x dx$
	Solution
	$\sec^2 x dx$
	$=\frac{1}{3}\sec^3 x + c$
	$-\frac{-3}{3}$ set $x + c$
Q7	
Q/	A curve is such that $\frac{dy}{dt} = 2x^2$.
	dx
	Given that the curve passes through the point (3, 2), find the equation of the curve.
	Solution:
	The equation of the curve is
	$y = (2x^2)x + c$
	$2 = \left(2 \times 3^2\right)(3) + c$
	c = -52
	The equation is $y = 2x^3 - 52$
Q8	Find the shaded area in the following diagram.
Q 0	The the shaded area in the following diagram.
	y $y = \sin x$
	$3\pi \rightarrow$
	π $\frac{\pi}{2}$ x
	Solution
	$\int \frac{3\pi}{2}$
	$\sin x dx$
	$=\left[-\cos x\right]_{0}^{\frac{3\pi}{2}}$
	$= \left[-\cos\frac{3\pi}{2}\right] - \left[-\cos 0\right]$
	= 0 + 1
	=1 unit ²